Efficient Algorithms for
Three Reachability Problems in
Safe Petri Nets

Pierre Bouvier Hubert Garavel
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France

Yy
Université J
GGGGG ble Alpes

Three reachability problems

m We focus on ordinary safe Petri Nets
m Dead Places Problem:

» aplaceis dead if it never gets a token

» for each place p, decide =R ({p}), where
R (M) < there exists a reachable marking in which M is included

m Dead Transitions Problem:
» a transition is dead if it is never enabled
» for each transition t, decide —=R (°t)

m Concurrent Places Problem:

» two places are concurrent if they can both have
a token simultaneously
» for each two places p, and p,, decide R ({p,, p,})
» concurrency between places is symmetric and quasi-reflexive

v

informatics gFmathematics ‘
6Z7W LI G 2

Why are these problems interesting?

m Dead places and dead transitions:

» useful for simplifying complex Petri nets, especially
those generated from higher-level formalisms

» profitable reduction: 20.4% dead places and
37.7% dead transitions

m Concurrent places:

» crucial role for the decomposition of Petri nets into
automata networks [Bouvier et al., Petri Nets 2020]

» statistically: 67% non-concurrent places

-
informatics gFmathematics ‘
6Z7W LI G 3

Complexity of these problems

m 3 subproblems of the Marking Coverability Problem:

Marking Coverability

Pt

Dead Transitions Concurrent Places
\ /
Dead Places

m These 3 problems are PSPACE-complete

L d
informatics gFmathematics ‘
6 ZW LI G 4

What about non-safe Petri nets?

m Concurrent places are most interesting
on safe Petri nets

m For any state machine having no dead place:

» 1 initial token
—> each place is only concurrent with itself

» 2 initial tokens
—> all places are pairwise concurrent

P
: informatics #¥mathematics ‘
:«W‘ LI G 5

Practical motivation

m Despite PSPACE complexity, we seek for efficient
algorithms that solve a majority of problems

m Benchmarks:

» we use a collection of 13,116 nets from academia, industry,

and competitions
» these models are diverse and complex

property

yes

no property

yes no

pure

62.9%|37.1%

connected

94.0%| 6.0%

free choice

41.3%|58.7%

strongly connected

14.3%|85.7%

extended free choicel||42.7%|57.3%

conservative

16.5%|83.5%

marked graph

3.5% 196.5%

sub-conservative

29.7%|70.3%

state machine

12.1%|87.9%

non trivial and unit safe||67.7%|32.3%

feature min value| max valuelaverage/median|std deviation
#places 1 131,216] 282.4 15 2690
#transitions 0| 16,967,720f 9232.8 20 270,287
#Harcs 0[146,528,584| 72,848 55 2,141,591
arc density 0.0% 100.0%| 14.5%| 9.4% 0.2

V4
informatics g#Fmathematics ‘
AZW LI G

Straightforward approach

m Reuse existing model checkers for Petri nets:
» encode the 3 problems as temporal-logic formulas

» analyse model-checking results to get dead places,
dead transitions and concurrent places

m Possible, yet inefficient:

» linear or quadratic number of formulas
(300 places = 45,150 formulas for concurrent places)

» redundant calculations: many similar formulas
evaluated on the same Petri net

v

informatics gFmathematics ‘
&t’?.éa/- L1 G 7

Dedicated approach
m Instead, we suggest tools with built-in options:

» option -dead-places:
result = vector of {dead, non-dead, unknown} values
indexed by place numbers

» option -dead-transitions:
result = vector of {dead, non-dead, unknown} values
indexed by transition numbers

» option -concurrent-places:
result = half-matrix of {concurrent, non-concurrent, unknown}

values, indexed by place numbers
1

(p,, p;) Non-concurrent 01
011
0101 <=1 (p,, p,) concurrent
01011
00111
(p5, p1) unknown .101001

L d
informatics gFmathematics ‘
6Z% LI G 8

Algorithms for computing the
vectors of dead places and
dead transitions

-
informatics gFmathematics
6Z%‘ LI G

1. Marking graph exploration

m Explore all reachable markings, e.g. using decision diagrams
» PSPACE-complete = may take too long or too much memory

m Algorithmic enhancements:
» timeout or limit on exploration depth
» speed-up calculations by not firing already known dead transitions
» shortcuts: halt exploration as soon as all results are known

m Expected results, for all places and transitions:
» complete exploration: gives dead or non-dead values

» incomplete exploration: gives non-dead or unknown values

in this case, we apply additional algorithms to remove as
many unknown values as possible

v

: informatics gFmathematics ‘
;\‘W‘ Ly e

10

2. Structural rules

m 8 simple theorems to compute some dead or non-dead values:

— Any place belonging to the initial marking M is not dead.

— Any transition having no input place (and no output place) is not dead.

— If a place p is dead, all the transitions of *p U p® are also dead.

— If a transition ¢ is not dead, all the places of *t U t* are also not dead.

— If a transition ¢ is dead, any place p such that *t = {p} is also dead.

— If a place p is not dead, any transition ¢ such that *¢ = {p} is also not dead.

— If the net is safe, any transition whose input places form a strict subset of
the output places is dead.

— If the net is unit safe, any transition having at least two input (resp. two
output) places located in two non-disjoint NUPN units is dead.

m These rules are applied repeatedly until saturation

v d

informatics g¥mathematics ‘
6&% LI G 11

3. Linear over-approximation

m Abstraction:

» the set of reachable markings is replaced by a
set E of places, such that, at the end of the algorithm:
p &€ E = place p is dead
*t £ E = transition t is dead

m Algorithm:
» initially, E is the initial marking
» repeat until saturation: foreacht, *t S E=>t*CE

m This gives, for each place and transition,
either a dead or unknown value

P
: informatics gFmathematics ‘
% LI G 1 2

Combination of approaches

m Approaches 1-3 are combined in a well-chosen order:
» structural rules
» linear over-approximation
» marking graph exploration
» structural rules (again)

m Two implementations:
» Caesar.bdd: 11K lines of C code (using Cudd for BDDs)
» ConcNUPN: 730 lines of Python
ConcNUPN is used to cross-check results of Caesar.bdd

P
informatics gFmathematics ‘
é Z?«W‘ LI G 1 3

Experimental results using Caesar.bdd

problem value of ¢ 0| 5 | 10|15 |30 |45 | 60 | 120180240300

% complete vectors |[44.6(93.0/93.6/93.8|94.4|94.6|95.1(95.3|95.4|95.5|95.6
dead places|% unknowns values [|48.9/33.5(32.0{31.3]28.9(28.3(27.9(27.1(26.5|25.9(25.8
% vector completion||69.3/197.0/197.397.5(97.7/97.9/97.9/98.1|98.1]98.2]98.2

% complete vectors [{29.3]92.3/92.9|93.2(93.7]94.0({94.1(94.4|94.7|94.9]95.0
dead trans.|% unknowns values [[6&8.7165.0/63.5(62.0(61.0(59.3|57.8|54.6|45.2(39.9(29.8
% vector completion|[50.9(95.8/96.2/96.4|96.7|96.8/96.9(97.1]97.2(97.3|97.3

m Dead places (with a BDD timeout of 60 s):
» fully solved vectors (no unknown values): 95.1%
» average number of unknown values in vectors: 2.1%

m Dead transitions (with a BDD timeout of 60 s):
» fully solved vectors (no unknown values): 94.1%
» average number of unknown values in vectors: 3.1%

L d
informatics g#Fmathematics ‘
6 Z?W LI G 1 4

Algorithms for computing the
half matrix of concurrent places

-
informatics gFmathematics
ét%‘ LI G

15

1. Marking graph exploration

m First, explore all reachable markings, e.g. using DDs:

» PSPACE-complete: the exploration may be incomplete
(timeout or limit on exploration depth)

» contrary to the marking graph exploration for
dead places, shortcuts are impossible or very unlikely
m Then, check for all pairs of places whether it exists a
reachable marking containing these places

m Expected results for all pairs of places:

» complete exploration:
gives concurrent or non-concurrent values

» incomplete exploration:
gives concurrent or unknown values

v

: informatics gFmathematics ‘
7\‘W LI G 1 6

m 8 theorems giving concurrent or non-concurrent pairs:

2. Structural rules

The places of the initial marking M|, are pairwise concurrent.

If a transition is not dead, its input places (resp. output places) are pairwise
concurrent.

A non dead place is concurrent with itself.

A dead place is non concurrent with any other place, including itself.

If a dead transition has two (distinct) input places, these places are non
concurrent.

If a transition ¢ (dead or not) has a single input place p, this place is non
concurrent with any output place of ¢t different from p.

For any path (p1,t1,p2,t2, ..., Pnstn, Prni1) such that each transition ¢; has a
single input place p; and at least one output place p;,1, the places p; and
pn+1 are non concurrent if they are distinct.

If the net is a unit-safe NUPN, any two distinct places located in non-disjoint
units are non concurrent. In particular, any two distinct places located in
the same unit are non concurrent.

m These rules are applied until saturation,

together with theorems for dead places and dead transitions

informatics g#Fmathematics ‘
AZW LI G

17

3. Quadratic under-approximation

m Abstraction: the set of reachable markings
replaced by a set E of pairs of places such that
{ps, P,} € E= p,and p, concurrent

m 4 theorems repeated until saturation:

— If a place p is not dead, any transition ¢ such that *¢ = {p} is also not dead.

— If two (distinct) places p; and p, are concurrent, any transition ¢ such that
*t = {p1,p2} is not dead.

— If a transition is not dead, its output places are pairwise concurrent.

— If two distinct places p; and ps are concurrent, p, is also concurrent with
each output place of any transition ¢ such that *t = {p; }.

m Gives certain pairs of concurrent places

P
informatics g#Fmathematics ‘
6 ZW LI G 18

4. Quadratic over-approximation

m Generalizes a former algorithm [Kovalyov & Esparza, 1996]

m Abstraction: the set of reachable markings is replaced by
a set E of pairs of places, such that, at the end of the
algorithm: p, and p, concurrent = {p,, p,} EE

m Algorithm:

» operator M; ® M, £ {{p,, p,} | P, € M A p, € M,}
» auto-product M@ € M Q@ M
» initially E = M,®, where M, is the initial marking
» repeat until saturation: for each transition t,
for each set of placesM:*tEM M@ CE= (M\°t)Ut*)@ CE

m This gives, for each pair of places, either a non-concurrent
or an unknown value

v

informatics gFmathematics ‘
é Z?«W‘ LI G 19

Combination of approaches

m Approaches 1-4 are combined in the following order:
» marking graph exploration
» structural rules
» quadratic under-approximation
» quadratic over-approximation

m Implemented in Caesar.bdd and ConcNUPN

V4
informatics, ‘mathematics
&Z/ A~ | | 20

Experimental results using Caesar.bdd

value of ¢ 0 5 110 | 15 | 30 | 45 | 60 [120] 180|240 | 300 | 360 | 420
% complete matrices ||51.0/91.6(92.2|92.5(93.0(93.6/94.0(94.2(94.4(94.5|94.6|94.7(94.7
Y% unknowns values ||45.0(44.7(44.7(44.4(44.4(43.7(43.7(43.7|43.6|43.6|43.6|43.6|43.6
81.6(96.3(96.6]96.8(/97.0/97.1(97.2197.3|97.4|97.4197.4|97.5/97.5

% matrix completion

m For a BDD timeout of 60 seconds:
» fully solved vectors (no unknown values): 94%

» average number of unknown values in matrices: 2.8%

m For the few incomplete half matrices:

Known values obtained by marking

Remaining unknown / graph exploration
values N\ 33.80%
43.70%

Known values obtained by structural rules
and approximated algorithms
22.50%

v
informatics gFmathematics ‘
&zzza,- L1 G 21

Conclusion

-
informatics gFmathematics
62/1&0/— L I ©

22

Conclusion

m Three useful, yet difficult problems (PSPACE-complete)
m Combination of approaches to handle large models:

» = 95% of models are completely solved (on 13,000+ nets)

» some large models are partially solved
(the solution contains unknown values)

m Future work: remove more unknown values
using, e.g., invariants, partial orders, SAT solving,
structural reductions, etc.

m Other tools are starting to address these problems:

» Kong (Nicolas Amat, LAAS-CNRS) — structural reductions
» ITS-Tools (Yann Thierry-Mieg, LIP6) — model checking

v

informatics gFmathematics ‘
% L1 G 23

