
Efficient Algorithms for
Three Reachability Problems in 

Safe Petri Nets

Pierre Bouvier Hubert Garavel
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France



Three reachability problems
We focus on ordinary safe Petri Nets
Dead Places Problem:

a place is dead if it never gets a token

for each place p, decide ¬R ({p}), where
R (M) ≝ there exists a reachable marking in which M is included

Dead Transitions Problem:
a transition is dead if it is never enabled

for each transition t, decide ¬R (•t)

Concurrent Places Problem:
two places are concurrent if they can both have
a token simultaneously

for each two places p1 and p2, decide R ({p1, p2})

concurrency between places is symmetric and quasi-reflexive

2



Why are these problems interesting? 
Dead places and dead transitions:

useful for simplifying complex Petri nets, especially 
those generated from higher-level formalisms

profitable reduction: 20.4% dead places and
37.7% dead transitions

Concurrent places:

crucial role for the decomposition of Petri nets into
automata networks [Bouvier et al., Petri Nets 2020]

statistically: 67% non-concurrent places

3



Complexity of these problems

3 subproblems of the Marking Coverability Problem:

These 3 problems are PSPACE-complete

4



What about non-safe Petri nets?

Concurrent places are most interesting
on safe Petri nets

For any state machine having no dead place:

1 initial token
 each place is only concurrent with itself

2 initial tokens
 all places are pairwise concurrent

5



Practical motivation
Despite PSPACE complexity, we seek for efficient 
algorithms that solve a majority of problems

Benchmarks:
we use a collection of 13,116 nets from academia, industry,
and competitions
these models are diverse and complex

6



Straightforward approach 

Reuse existing model checkers for Petri nets:

encode the 3 problems as temporal-logic formulas

analyse model-checking results to get dead places,
dead transitions and concurrent places

Possible, yet inefficient:

linear or quadratic number of formulas
(300 places  45,150 formulas for concurrent places)

redundant calculations: many similar formulas
evaluated on the same Petri net

7



Dedicated approach
Instead, we suggest tools with built-in options:

option -dead-places:
result = vector of {dead, non-dead, unknown} values

indexed by place numbers

option -dead-transitions:
result = vector of {dead, non-dead, unknown} values

indexed by transition numbers

option -concurrent-places:
result = half-matrix of {concurrent, non-concurrent, unknown}

values, indexed by place numbers

8

(p4, p4) concurrent

(p2, p1) non-concurrent

(p7, p1) unknown



Algorithms for computing the 
vectors of dead places and 
dead transitions

9



1. Marking graph exploration

Explore all reachable markings, e.g. using decision diagrams

PSPACE-complete may take too long or too much memory

Algorithmic enhancements:

timeout or limit on exploration depth

speed-up calculations by not firing already known dead transitions

shortcuts: halt exploration as soon as all results are known

Expected results, for all places and transitions:

complete exploration: gives dead or non-dead values

incomplete exploration: gives non-dead or unknown values
in this case, we apply additional algorithms to remove as
many unknown values as possible

10



2. Structural rules 

8 simple theorems to compute some dead or non-dead values:

These rules are applied repeatedly until saturation

11



3. Linear over-approximation

Abstraction:

the set of reachable markings is replaced by a
set E of places, such that, at the end of the algorithm:
p ∉ E  place p is dead

•t ⊈ E  transition t is dead

Algorithm:

initially, E is the initial marking

repeat until saturation: for each t, •t ⊆ E ⇒ t• ⊆ E

This gives, for each place and transition,
either a dead or unknown value

12



Combination of approaches

Approaches 1-3 are combined in a well-chosen order:

structural rules

linear over-approximation

marking graph exploration

structural rules (again)

Two implementations:

Caesar.bdd: 11K lines of C code (using Cudd for BDDs)

ConcNUPN: 730 lines of Python

ConcNUPN is used to cross-check results of Caesar.bdd

13



Experimental results using Caesar.bdd

Dead places (with a BDD timeout of 60 s):

fully solved vectors (no unknown values): 95.1%

average number of unknown values in vectors: 2.1%

Dead transitions (with a BDD timeout of 60 s):

fully solved vectors (no unknown values): 94.1%

average number of unknown values in vectors: 3.1%

14



Algorithms for computing the 
half matrix of concurrent places

15



1. Marking graph exploration
First, explore all reachable markings, e.g. using DDs:

PSPACE-complete: the exploration may be incomplete
(timeout or limit on exploration depth)

contrary to the marking graph exploration for
dead places, shortcuts are impossible or very unlikely

Then, check for all pairs of places whether it exists a 
reachable marking containing these places

Expected results for all pairs of places:

complete exploration:
gives concurrent or non-concurrent values

incomplete exploration:
gives concurrent or unknown values

16



2. Structural rules
8 theorems giving concurrent or non-concurrent pairs:

These rules are applied until saturation,
together with theorems for dead places and dead transitions

17



3. Quadratic under-approximation

Abstraction: the set of reachable markings 
replaced by a set E of pairs of places such that
{p1, p2} ∈ E  p1 and p2 concurrent

4 theorems repeated until saturation:

Gives certain pairs of concurrent places

18



4. Quadratic over-approximation
Generalizes a former algorithm [Kovalyov & Esparza, 1996]

Abstraction: the set of reachable markings is replaced by 
a set E of pairs of places, such that, at the end of the 
algorithm: p1 and p2 concurrent  {p1, p2} ∈ E

Algorithm:

operator M1 ⊗M2 ≝ {{p1, p2} │ p1 ∈M1 ∧ p2 ∈M2}

auto-product M② ≝M ⊗M

initially E = M0
②, where M0 is the initial marking

repeat until saturation: for each transition t,
for each set of places M: •t ⊆M ∧ M ②⊆ E ⇒ ((M \ •t) ∪ t•) ②⊆ E

This gives, for each pair of places, either a non-concurrent
or an unknown value

19



Combination of approaches

Approaches 1-4 are combined in the following order:

marking graph exploration

structural rules

quadratic under-approximation

quadratic over-approximation

Implemented in Caesar.bdd and ConcNUPN

20



Experimental results using Caesar.bdd

For a BDD timeout of 60 seconds:
fully solved vectors (no unknown values): 94%

average number of unknown values in matrices: 2.8%

For the few incomplete half matrices:

21

Known values obtained by marking 
graph exploration

33.80%

Known values obtained by structural rules 
and approximated algorithms

22.50%

Remaining unknown 
values
43.70%



Conclusion

22



Conclusion
Three useful, yet difficult problems (PSPACE-complete)

Combination of approaches to handle large models:

≈ 95% of models are completely solved (on 13,000+ nets)

some large models are partially solved
(the solution contains unknown values)

Future work: remove more unknown values
using, e.g., invariants, partial orders, SAT solving, 
structural reductions, etc.

Other tools are starting to address these problems:

Kong (Nicolas Amat, LAAS-CNRS) – structural reductions

ITS-Tools (Yann Thierry-Mieg, LIP6) – model checking

23


