Efficient Algorithms for Three Reachability Problems in Safe Petri Nets

Pierre Bouvier Hubert Garavel

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France

Three reachability problems

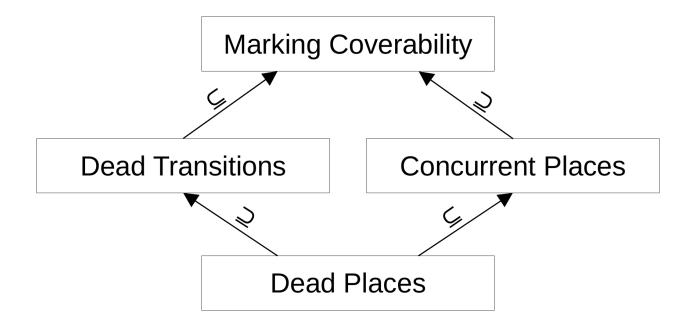
- We focus on ordinary safe Petri Nets
- Dead Places Problem:
 - a place is dead if it never gets a token
 - ► for each place p, decide ¬R ({p}), where $R (M) \stackrel{\text{def}}{=} there \ exists \ a \ reachable \ marking \ in \ which \ M \ is \ included$
- Dead Transitions Problem:
 - a transition is dead if it is never enabled
 - ▶ for each transition t, decide ¬R (*t)
- Concurrent Places Problem:
 - two places are concurrent if they can both have a token simultaneously
 - for each two places p_1 and p_2 , decide R ($\{p_1, p_2\}$)
 - concurrency between places is symmetric and quasi-reflexive

Why are these problems interesting?

- Dead places and dead transitions:
 - useful for simplifying complex Petri nets, especially those generated from higher-level formalisms
 - ▶ profitable reduction: 20.4% dead places and 37.7% dead transitions
- Concurrent places:
 - crucial role for the decomposition of Petri nets into automata networks [Bouvier et al., Petri Nets 2020]
 - statistically: 67% non-concurrent places

Complexity of these problems

3 subproblems of the Marking Coverability Problem:



■ These 3 problems are PSPACE-complete

What about non-safe Petri nets?

- Concurrent places are most interesting on safe Petri nets
- For any state machine having no dead place:
 - ▶ 1 initial token
 - \Rightarrow each place is only concurrent with itself
 - 2 initial tokens
 - ⇒ all places are pairwise concurrent

Practical motivation

- Despite PSPACE complexity, we seek for efficient algorithms that solve a majority of problems
- Benchmarks:
 - we use a collection of 13,116 nets from academia, industry, and competitions
 - these models are diverse and complex

property	yes	no
pure	62.9%	37.1%
free choice	41.3%	58.7%
extended free choice	42.7%	57.3%
marked graph	3.5%	96.5%
state machine	12.1%	87.9%

property	yes	no
connected	94.0%	6.0%
strongly connected	14.3%	85.7%
conservative	16.5%	83.5%
sub-conservative	29.7%	70.3%
non trivial and unit safe	67.7%	32.3%

feature	min value	max value	average	median	std deviation
#places	1	131,216	282.4	15	2690
#transitions	0	16,967,720	9232.8	20	270,287
#arcs	0	146,528,584	72,848	55	2,141,591
arc density	0.0%	100.0%	14.5%	9.4%	0.2

Straightforward approach

- Reuse existing model checkers for Petri nets:
 - encode the 3 problems as temporal-logic formulas
 - analyse model-checking results to get dead places, dead transitions and concurrent places
- Possible, yet inefficient:
 - ▶ linear or quadratic number of formulas (300 places \Rightarrow 45,150 formulas for concurrent places)
 - redundant calculations: many similar formulas evaluated on the same Petri net

Dedicated approach

- Instead, we suggest tools with built-in options:
 - option -dead-places: result = vector of {dead, non-dead, unknown} values indexed by place numbers
 - option -dead-transitions: result = vector of {dead, non-dead, unknown} values indexed by transition numbers
 - option -concurrent-places: result = half-matrix of {concurrent, non-concurrent, unknown} values, indexed by place numbers

```
(p_{2}, p_{1}) \text{ non-concurrent} \implies \begin{matrix} 1 \\ 01 \\ 011 \\ 0101 \\ 01011 \\ 000111 \\ 000111 \\ 000111 \\ 0101001 \end{matrix} 
(p_{4}, p_{4}) \text{ concurrent}
```


Algorithms for computing the vectors of dead places and dead transitions

1. Marking graph exploration

- Explore all reachable markings, e.g. using decision diagrams
 - ► PSPACE-complete ⇒ may take too long or too much memory
- Algorithmic enhancements:
 - timeout or limit on exploration depth
 - speed-up calculations by not firing already known dead transitions
 - shortcuts: halt exploration as soon as all results are known
- Expected results, for all places and transitions:
 - complete exploration: gives dead or non-dead values
 - incomplete exploration: gives non-dead or unknown values in this case, we apply additional algorithms to remove as many unknown values as possible

2. Structural rules

- 8 simple theorems to compute some dead or non-dead values:
- Any place belonging to the initial marking M_0 is not dead.
- Any transition having no input place (and no output place) is not dead.
- If a place p is dead, all the transitions of $p \cup p$ are also dead.
- If a transition t is not dead, all the places of ${}^{\bullet}t \cup t^{\bullet}$ are also not dead.
- If a transition t is dead, any place p such that ${}^{\bullet}t = \{p\}$ is also dead.
- If a place p is not dead, any transition t such that ${}^{\bullet}t = \{p\}$ is also not dead.
- If the net is safe, any transition whose input places form a strict subset of the output places is dead.
- If the net is unit safe, any transition having at least two input (resp. two output) places located in two non-disjoint NUPN units is dead.
- These rules are applied repeatedly until saturation

3. Linear over-approximation

Abstraction:

the set of reachable markings is replaced by a set E of places, such that, at the end of the algorithm:

```
p ∉ E ⇒ place p is deadt ⊈ E ⇒ transition t is dead
```

Algorithm:

- initially, E is the initial marking
- ▶ repeat until saturation: for each t, $^{\bullet}t \subseteq E \Rightarrow t^{\bullet} \subseteq E$
- This gives, for each place and transition, either a dead or unknown value

Combination of approaches

- Approaches 1-3 are combined in a well-chosen order:
 - structural rules
 - linear over-approximation
 - marking graph exploration
 - structural rules (again)
- Two implementations:
 - Caesar.bdd: 11K lines of C code (using Cudd for BDDs)
 - ConcNUPN: 730 lines of Python

ConcNUPN is used to cross-check results of Caesar.bdd

Experimental results using Caesar.bdd

problem	value of t	0	5	10	15	30	45	60	120	180	240	300
% complete vector				1						1		
	% unknowns values											
	% vector completion	69.3	97.0	97.3	97.5	97.7	97.9	97.9	98.1	98.1	98.2	98.2
	% complete vectors											
1	% unknowns values	68.7	65.0	63.5	62.0	61.0	59.3	57.8	54.6	45.2	39.9	29.8
	% vector completion	50.9	95.8	96.2	96.4	96.7	96.8	96.9	97.1	97.2	97.3	97.3

- Dead places (with a BDD timeout of 60 s):
 - ► fully solved vectors (no unknown values): 95.1%
 - average number of unknown values in vectors: 2.1%
- Dead transitions (with a BDD timeout of 60 s):
 - ▶ fully solved vectors (no unknown values): 94.1%
 - average number of unknown values in vectors: 3.1%

Algorithms for computing the half matrix of concurrent places

1. Marking graph exploration

- First, explore all reachable markings, e.g. using DDs:
 - PSPACE-complete: the exploration may be incomplete (timeout or limit on exploration depth)
 - contrary to the marking graph exploration for dead places, shortcuts are impossible or very unlikely
- Then, check for all pairs of places whether it exists a reachable marking containing these places
- Expected results for all pairs of places:
 - complete exploration: gives concurrent or non-concurrent values
 - incomplete exploration: gives concurrent or unknown values

2. Structural rules

■ 8 theorems giving concurrent or non-concurrent pairs:

- The places of the initial marking M_0 are pairwise concurrent.
- If a transition is not dead, its input places (resp. output places) are pairwise concurrent.
- A non dead place is concurrent with itself.
- A dead place is non concurrent with any other place, including itself.
- If a dead transition has two (distinct) input places, these places are non concurrent.
- If a transition t (dead or not) has a single input place p, this place is non concurrent with any output place of t different from p.
- For any path $(p_1, t_1, p_2, t_2, ..., p_n, t_n, p_{n+1})$ such that each transition t_i has a single input place p_i and at least one output place p_{i+1} , the places p_1 and p_{n+1} are non concurrent if they are distinct.
- If the net is a unit-safe NUPN, any two distinct places located in non-disjoint units are non concurrent. In particular, any two distinct places located in the same unit are non concurrent.
- These rules are applied until saturation, together with theorems for dead places and dead transitions

3. Quadratic under-approximation

- Abstraction: the set of reachable markings replaced by a set E of pairs of places such that $\{p_1, p_2\} \in E \Rightarrow p_1 \text{ and } p_2 \text{ concurrent}$
- 4 theorems repeated until saturation:
 - If a place p is not dead, any transition t such that ${}^{\bullet}t = \{p\}$ is also not dead.
 - If two (distinct) places p_1 and p_2 are concurrent, any transition t such that ${}^{\bullet}t = \{p_1, p_2\}$ is not dead.
 - If a transition is not dead, its output places are pairwise concurrent.
 - If two distinct places p_1 and p_2 are concurrent, p_2 is also concurrent with each output place of any transition t such that ${}^{\bullet}t = \{p_1\}.$
- Gives certain pairs of concurrent places

4. Quadratic over-approximation

- Generalizes a former algorithm [Kovalyov & Esparza, 1996]
- Abstraction: the set of reachable markings is replaced by a set E of pairs of places, such that, at the end of the algorithm: p_1 and p_2 concurrent $\Rightarrow \{p_1, p_2\} \in E$
- Algorithm:
 - ▶ operator $M_1 \otimes M_2 \stackrel{\text{def}}{=} \{\{p_1, p_2\} \mid p_1 \in M_1 \land p_2 \in M_2\}$
 - ▶ auto-product $M^{2} \stackrel{\text{def}}{=} M \otimes M$
 - ▶ initially $E = M_0^2$, where M_0 is the initial marking
 - ▶ repeat until saturation: for each transition t, for each set of places M: $^{\bullet}t \subseteq M \land M ^{\textcircled{2}} \subseteq E \Rightarrow ((M \setminus ^{\bullet}t) \cup t^{\bullet}) ^{\textcircled{2}} \subseteq E$
- This gives, for each pair of places, either a non-concurrent or an unknown value

Combination of approaches

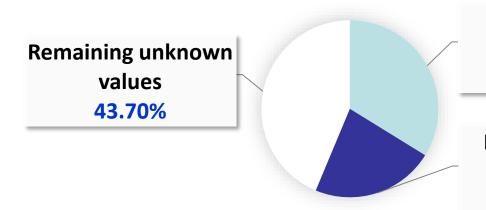
- Approaches 1-4 are combined in the following order:
 - marking graph exploration
 - structural rules
 - quadratic under-approximation
 - quadratic over-approximation

Implemented in Caesar.bdd and ConcNUPN

Experimental results using Caesar.bdd

value of t	0	5	10	15	30	45	60	120	180	240	300	360	420
% complete matrices	51.0	91.6	92.2	92.5	93.0	93.6	94.0	94.2	94.4	94.5	94.6	94.7	94.7
% unknowns values	45.0	44.7	44.7	44.4	44.4	43.7	43.7	43.7	43.6	43.6	43.6	43.6	43.6
% matrix completion	81.6	96.3	96.6	96.8	97.0	97.1	97.2	97.3	97.4	97.4	97.4	97.5	97.5

- For a BDD timeout of 60 seconds:
 - fully solved vectors (no unknown values): 94%
 - average number of unknown values in matrices: 2.8%
- For the few incomplete half matrices:



Known values obtained by marking graph exploration

33.80%

Known values obtained by structural rules and approximated algorithms

22.50%

Conclusion

Conclusion

- Three useful, yet difficult problems (PSPACE-complete)
- Combination of approaches to handle large models:
 - ▶ $\approx 95\%$ of models are completely solved (on 13,000+ nets)
 - some large models are partially solved (the solution contains unknown values)
- Future work: remove more unknown values using, e.g., invariants, partial orders, SAT solving, structural reductions, etc.
- Other tools are starting to address these problems:
 - ► Kong (Nicolas Amat, LAAS-CNRS) structural reductions
 - ► ITS-Tools (Yann Thierry-Mieg, LIP6) model checking

