Efficient Algorithms for Three Reachability Problems in Safe Petri Nets

<u>Pierre Bouvier</u> Hubert Garavel

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France

Three reachability problems

- Dead places: finding all places that never have a token
- Dead transitions: finding all transitions that never fire
- Concurrent places: finding all pairs of places that can both have a token simultaneously
- These 3 problems are PSPACE-complete
- We focus on ordinary, safe Petri nets:
 - ordinary: arcs have multiplicity one
 - safe: at most one token per place

Why are these problems interesting?

Dead places and dead transitions:

- useful for simplifying complex Petri nets, especially those generated from higher-level formalisms
- profitable reduction: 20.4% dead places and 37.7% dead transitions

Concurrent places:

- crucial role for the decomposition of Petri nets into automata networks [Bouvier et al., Petri Nets 2020]
- statistically: 67% non-concurrent places

Approach: combination of algorithms

We propose a combination of several algorithms

- 1. Exploration of reachable markings
 - ▶ PSPACE-complete \Rightarrow may take too long
 - \Rightarrow timeout option needed
 - \Rightarrow exploration may be incomplete
 - ▶ incomplete exploration \Rightarrow unknown values may remain

Approach: combination of algorithms

- 2. Structural rules:
 - simple theorems to remove unknown values on large nets
 - exploit safeness properties of Petri nets and NUPNs
- 3. Under and over-approximations:
 - abstraction of the set of reachable markings
 - ▶ memory: exponential \rightarrow linear or quadratic complexity
 - ▶ time: exponential \rightarrow polynomial time complexity

Experimental results

- Two software implementations: in C and Python
- Assessment on a collection of 13,000+ Petri nets from academia, industry, and competitions
 - ► ≈ 95% of models are completely solved
 - some large models are partially solved (the solution contains unknown values)
- More work needed for the remaining 5%
 - colleagues in Toulouse and Paris have started adapting their tools to address these 3 problems

