Abstraction-based Incremental Inductive Coverability for Petri nets Jiawen Kang YunJun Bai Li Jiao State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China #### **Abstraction** - Check the coverability problem of Petri nets - Combine IC3 with place-merge abstraction (IC3+PMA) ### Outline - 1 Preliminaries - ② IC3 algorithm for PN - ③ Place-merge abstraction (PMA) - 4 IC3+PMA algorithm - **⑤** Experiments #### Definition A Petri net is a tuple $N = \langle P, T, W, m_0 \rangle$ where: - P is a finite set of places - T is a finite set of transitions such that $P \cap T = \emptyset$ - W is an arc function: $(P \times T) \cup (T \times P) \rightarrow \mathbb{N}$ describing the relationship between places and transitions - m_0 is the initial marking. A marking $m \in \mathbb{N}^{|P|}$ is a vector specifying a number m(p) of tokens for each place $p \in P$. for vector $m_1, m_2 \in \mathbb{N}^{|P|}$ $m_1 \le m_2$ iff for every $p \in P$: $m_1(p) \le m_2(p)$ #### Definition Let N be a Petri net. - $-pre(m) = \{m' | \exists t \in T : m' \to m\}$ - $Reach_i$ contains all reachable markings from m_0 within i steps. - $Reach = \bigcup_{i \ge 0} Reach_i$ contains all reachable markings from m_0 . #### Coverability problem Let N be a Petri net, m_t the target marking. - The coverability problem is to prove whether there exists a reachable marking $m_r \in Reach$ such that $m_t \leq m_r$. #### Coverability problem Let N be a Petri net, m_t the target marking. - The coverability problem is to prove whether there exists a reachable marking $m_r \in Reach$ such that $m_t \leq m_r$. - The coverable set of N within i steps is $Cover_i = Reach_i^{\downarrow}$ - The coverable set of N is $Cover = Reach^{\downarrow}$ IC3 is a state-of-art of model checking Efficient implementation of IC3 to check the coverability problem of Petri nets without using SMT solvers IC3 maintains a sequence F_0 , $F_1 \dots F_k$ where F_i is a downward-closed set called frame that overapproximates the coverable set within i steps. The algorithm generally proceeds by alternating two phases: the blocking phase and the propagation phase. Blocking phase: block(a, i) Blocking phase: $block(a, i) \longrightarrow$ try to prove a^{\uparrow} is unreachable within i steps #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ $Cover_1$ \cap F_1 .. $Cover_{i-1}$ F_{i-1} Cover_i ∩ F_i . #### Blocking phase: block(a, i) given a pair (a, i) #### Blocking phase: block(a, i) given a pair (a, i) try to prove a^{\uparrow} is unreachable within i steps #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ $Cover_1$ $|\cap$ F_1 . . $Cover_{i-1}$ F_{i-1} Cover_i ∩ a^{\uparrow} F_i #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ Cover₁ ... $$pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$$ #### Blocking phase: block(a, i) Cover $_0$ \cap $F_0=m_0^{\downarrow}$ $$F_i$$... $$pre\bigl(a^{\uparrow}\bigr)\cap F_{i-1}\,/a^{\uparrow}\neq\emptyset$$ #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ Cover₁ $$pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow} \neq \emptyset$$ extract an unselected marking b from $pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$ 8/22 #### Blocking phase: block(a, i) extract an unselected marking b from $pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$ #### Blocking phase: block(a, i) 8/22 #### Blocking phase: block(a, i) $$pre\big(a^{\uparrow}\big)\cap F_{i-1}\,/a^{\uparrow}\neq\emptyset$$ extract an unselected marking bfrom $pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$ generate a new pair (b, i-1)block(b, i-1) try to prove b^{\uparrow} is unreachable within i-1 steps 8/22 #### Blocking phase: block(a, i) Kang, Bai, Jiao June 24, 2021 8/22 #### Blocking phase: block(a, i) finally generate a new pair (d,0) $$pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow} \neq \emptyset$$ extract an unselected marking bfrom $pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$ generate a new pair (b, i-1)block(b, i-1) try to prove b^{\uparrow} is unreachable within i-1 steps 8/22 #### Blocking phase: block(a, i) finally generate a new pair (d, 0) find a path from m_0^{\downarrow} to a^{\uparrow} $$pre(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow} \neq \emptyset$$ extract an unselected marking b from $pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$ generate a new pair (b, i-1)block(b, i-1) try to prove b^{\uparrow} is unreachable within i-1 steps 8/22 #### Blocking phase: block(a, i) finally generate a new pair (d,0) find a path from m_0^\downarrow to a^\uparrow fail to block a at F_i i.e. a is coverable $$pre(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow} \neq \emptyset$$ extract an unselected marking b from $pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$ generate a new pair (b, i-1)block(b, i-1) try to prove b^{\uparrow} is unreachable within i-1 steps 8/22 #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ Cover₁ ... $$pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow}$$ #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ $$F_{i-1}$$ $$pre\bigl(a^{\uparrow}\bigr)\cap F_{i-1}\,/a^{\uparrow}=\emptyset$$ #### Blocking phase: block(a, i) $F_0 = m_0^{\downarrow}$ Cover₁ □ ... $$pre(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow} = \emptyset$$ a^{\uparrow} cannot be reachable in 1 step from $Cover_{i-1}$ #### Blocking phase: block(a, i) .. $$pre(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow} = \emptyset$$ a^{\uparrow} cannot be reachable in 1 step from $Cover_{i-1}$ 8/22 #### Blocking phase: block(a, i) $$pre\big(a^{\uparrow}\big)\cap F_{i-1}\,/a^{\uparrow}=\emptyset$$ a^{\uparrow} cannot be reachable in 1 step from $Cover_{i-1}$ a is uncoverable within i steps #### Blocking phase: block(a, i) F_1 $$pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow} = \emptyset$$ a^{\uparrow} cannot be reachable in 1 step from $Cover_{i-1}$ a is uncoverable within i steps a^{\uparrow} can be removed from the coverable set F_i 8/22 #### Blocking phase: block(a, i) $$pre(a^{\uparrow}) \cap F_{i-1}/a^{\uparrow} = \emptyset$$ a^{\uparrow} cannot be reachable in 1 step from $Cover_{i-1}$ a is uncoverable within i steps a^{\uparrow} can be removed from the coverable set F_i 8/22 input $N=\langle P,T,W,m_0\rangle$ and m_t initialize $F_0=m_0^\downarrow,F_1=\mathbb{N}^{|P|},k=1$ input $$N=\langle P,T,W,m_0\rangle$$ and m_t initialize $F_0=m_0^\downarrow,F_1=\mathbb{N}^{|P|},k=1$ generate a pair (m_t, k) input $$N=\langle P,T,W,m_0\rangle$$ and m_t initialize $F_0=m_0^\downarrow, F_1=\mathbb{N}^{|P|}, k=1$ generate a pair (m_t,k) Kang, Bai, Jiao June 24, 2021 Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality. Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality. #### Definition Given a Petri net $N = \langle P, T, W, m_0 \rangle$, where $P = \{p_1, p_1 \dots p_k\}$ - The abstraction function is a surjective function $\alpha \colon P \to \hat{P}$, where $\hat{P} = \{\hat{p}_1, \hat{p}_2 \dots \hat{p}_{\hat{k}}\}$ and $\hat{k} \leq k$. Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality. Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality. $$\alpha(p_0) = \alpha(p_1) = q_0$$ $$\alpha(p_2) = \alpha(p_3) = \alpha(p_4) = q_1$$ Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality. $$\alpha(p_0) = \alpha(p_1) = q_0$$ $$\alpha(p_2) = \alpha(p_3) = \alpha(p_4) = q_1$$ All weights of arcs are equal to 1 except for $W(q_1, t_2) = 2$. ### Proposition Given a Petri net $N=\langle P,T,W,m_0\rangle$ and one of its abstractions $\widehat{N}=\langle \widehat{P},T,\widehat{W},\widehat{m}_0\rangle$, m_t and its abstract version \widehat{m}_t - If m_t is coverable in N, then its abstract version \widehat{m}_t is coverable in \widehat{N} . But the converse does not hold. ### Proposition Given a Petri net $N=\langle P,T,W,m_0\rangle$ and one of its abstractions $\hat{N}=\langle \hat{P},T,\hat{W},\hat{m}_0\rangle$, m_t and its abstract version \hat{m}_t - If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N} . But the converse does not hold. \widehat{m}_t is uncoverable in \widehat{N} ### Proposition Given a Petri net $N=\langle P,T,W,m_0\rangle$ and one of its abstractions $\hat{N}=\langle \hat{P},T,\hat{W},\hat{m}_0\rangle$, m_t and its abstract version \hat{m}_t - If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N} . But the converse does not hold. \widehat{m}_t is uncoverable in $\widehat{N} \longrightarrow m_t$ is uncoverable in N ### Proposition Given a Petri net $N=\langle P,T,W,m_0\rangle$ and one of its abstractions $\hat{N}=\langle \hat{P},T,\hat{W},\hat{m}_0\rangle$, m_t and its abstract version \hat{m}_t - If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N} . But the converse does not hold. $$\widehat{m}_t$$ is uncoverable in \widehat{N} \longrightarrow m_t is uncoverable in N \widehat{m}_t is coverable in \widehat{N} ### Proposition Given a Petri net $N=\langle P,T,W,m_0\rangle$ and one of its abstractions $\hat{N}=\langle \hat{P},T,\hat{W},\hat{m}_0\rangle$, m_t and its abstract version \hat{m}_t - If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N} . But the converse does not hold. $$\widehat{m}_t$$ is uncoverable in \widehat{N} \longrightarrow m_t is uncoverable in N \widehat{m}_t is coverable in \widehat{N} \longrightarrow m_t is coverable in N Spurious counterexample ### Spurious counterexample #### Spurious counterexample Abstract PN $(0,3) \xrightarrow{t_0} (1,2) \xrightarrow{t_0} (2,1)$ #### Spurious counterexample #### Spurious counterexample t_0 is not enabled here When a counterexample is spurious When a counterexample is spurious Counter-example $$\pi = t_0 t_1 \dots t_{k-1}$$ is not spurious iff $m_0 \overset{\iota_0}{\to} m_1 \overset{\iota_1}{\to} m_2 \overset{\iota_2}{\to} \cdots \overset{\iota_{k-1}}{\to} m_k \land m_t \leqslant m_k$ When a counterexample is spurious Counter-example $$\pi=t_0t_1\dots t_{k-1}$$ is not spurious iff $m_0\overset{\iota_0}{\to}m_1\overset{\iota_1}{\to}m_2\overset{\iota_2}{\to}\cdots\overset{\iota_{k-1}}{\to}m_k \land m_t \leqslant m_k$ The path π is spurious: - ① t_i is not enabled at m_i ($0 \le i < k$), or - ② t_i is enabled at m_i $(0 \le i < k)$, but $m_t \not \leqslant m_k$ How to refine an abstraction? How to refine an abstraction? t_i is not enabled at m_i $(0 \le i < k)$ - extract places satisfying $m_i(p) < W(p, t_i)$ - merge these places into a new abstract place How to refine an abstraction? t_i is not enabled at m_i $(0 \le i < k)$ - extract places satisfying $m_i(p) < W(p, t_i)$ - merge these places into a new abstract place t_i is enabled at m_i $(0 \le i < k)$, but $m_t \not \leq m_k$ - extract places satisfying $m_t(p) > m_k(p)$ - merge these places into a new abstract place #### How to refine an abstraction? t_0 is not enabled here #### Abstraction refinement t_0 is not enabled here #### Abstraction refinement t_0 is not enabled here #### Abstraction refinement Abstract $$p_2$$ from q_1 ! $(1,2)$ $(2,1)$ $$\alpha(p_0) = \alpha(p_1) = q_0 \quad (1,0,1,1,0) \quad (1,1,0,0) (2,0,0,1,0) \quad (2,0,0,1,0) \quad (2,0,1,0,0)$$ t_0 is not enabled here #### Abstraction refinement Abstract $$p_2$$ from q_1 ! $(1,2)$ $(2,1)$ $$\alpha(p_0) = \alpha(p_1) = q_0 \quad (1,0,1,1,0) \quad (1,1,1,0,0) \quad (1,1,1,0,0) \quad (1,1,1,0,0) \quad (1,1,1,0,0) \quad (1,1,1,0,0) \quad (2,0,0,1,0) \quad (2,0,1,0,0) \quad (2,0,1,0,0)$$ t_0 is not enabled here #### Abstraction refinement t_0 is not enabled here #### Abstraction refinement - Try to improve the outperformance of IC3 - IC3 is the core of IC3+PMA - Place-merge abstraction reduces the dimensionality of PN - IC3 works on the abstract PN with lower dimensionality merge all places into a single place - total 80 benchmarks - compare running time between IC3 and IC3+PMA - IC3+PMA outperforms IC3 on 53.75% of benchmarks - dimensionality has decreased by 63.34% on average | Benchmark | Places | IC3+PMA
AbsPlaces | IC3+PMA
Ref | IC3+PMA
time(s) | IC3 time(s) | |--------------------|--------|----------------------|----------------|--------------------|-------------| | Uncoverable instan | ices | | | | | | newrtp | 9 | 1 | 0 | < 0.01 | 0.06 | | kanban (bounded) | 16 | 1 | 0 | < 0.01 | 1.22 | | manufacturing | 13 | 1 | 0 | < 0.01 | 0.16 | | fms | 22 | 4 | 3 | < 0.01 | < 0.01 | | fms_attic | 22 | 4 | 3 | 0.01 | 0.04 | | mesh2x2 | 32 | 5 | 4 | 0.01 | 0.03 | | mesh3x2 | 52 | 5 | 4 | 0.02 | 0.08 | | pingpong | 6 | 5 | 4 | < 0.01 | < 0.01 | | RandCAS 2 | 110 | 8 | 7 | 0.08 | 0.44 | | Conditionals 2 | 214 | 26 | 25 | 1.39 | 5.79 | | Coverable instance | s | , | | | | | leabasicapproach | 16 | 5 | 4 | < 0.01 | < 0.01 | | Dekker 1 | 41 | 27 | 25 | 2.08 | 3.23 | | DoubleLock1 1 | 64 | 35 | 32 | 11.26 | 13.31 | | Pthread5 1 | 80 | 47 | 44 | 97.28 | Timeout | | RandLock0 2 | 110 | 48 | 46 | 21.40 | 24.89 | | Spin2003 2 | 56 | 38 | 35 | 67.35 | Timeout | | Szymanski 1 | 61 | 46 | 44 | 19.62 | 32.69 | | Constants 1 | 26 | 14 | 13 | 0.03 | 0.03 | | FuncPtr3 1 | 40 | 16 | 13 | 0.19 | 0.33 | IC3+PMA performs better | Benchmark | Places | IC3+PMA
AbsPlaces | IC3+PMA
Ref | IC3+PMA
time(s) | IC3 time(s) | |--------------------|--------|----------------------|----------------|--------------------|-------------| | Uncoverable instan | ices | | | | | | newrtp | 9 | 1 | 0 | < 0.01 | 0.06 | | kanban (bounded) | 16 | 1 | 0 | < 0.01 | 1.22 | | manufacturing | 13 | 1 | 0 | < 0.01 | 0.16 | | fms | 22 | 4 | 3 | < 0.01 | < 0.01 | | fms_attic | 22 | 4 | 3 | 0.01 | 0.04 | | mesh2x2 | 32 | 5 | 4 | 0.01 | 0.03 | | mesh3x2 | 52 | 5 | 4 | 0.02 | 0.08 | | pingpong | 6 | 5 | 4 | < 0.01 | < 0.01 | | RandCAS 2 | 110 | 8 | 7 | 0.08 | 0.44 | | Conditionals 2 | 214 | 26 | 25 | 1.39 | 5.79 | | Coverable instance | s | | | | | | leabasicapproach | 16 | 5 | 4 | < 0.01 | < 0.01 | | Dekker 1 | 41 | 27 | 25 | 2.08 | 3.23 | | DoubleLock1 1 | 64 | 35 | 32 | 11.26 | 13.31 | | Pthread5 1 | 80 | 47 | 44 | 97.28 | Timeout | | RandLock0 2 | 110 | 48 | 46 | 21.40 | 24.89 | | Spin2003 2 | 56 | 38 | 35 | 67.35 | Timeout | | Szymanski 1 | 61 | 46 | 44 | 19.62 | 32.69 | | Constants 1 | 26 | 14 | 13 | 0.03 | 0.03 | | FuncPtr3 1 | 40 | 16 | 13 | 0.19 | 0.33 | IC3+PMA performs better | Benchmark | Places | IC3+PMA | IC3+PMA | IC3+PMA | IC3 time(s) | |-------------------------------|--------|-----------|---------|---------|-------------| | | | AbsPlaces | Ref | time(s) | ` | | Uncoverable instances | | | | | | | Peterson | 14 | 10 | 8 | 0.35 | 0.13 | | Lamport | 11 | 7 | 6 | 0.06 | 0.02 | | Ext. ReadWrite (small consts) | 24 | 14 | 13 | 1.23 | 0.28 | | $x0_AA_q1$ | 312 | # | # | Timeout | 70.28 | | csm | 14 | 9 | 8 | 0.19 | 0.02 | | Coverable instances | | | | | | | RandCAS 1 | 48 | 34 | 33 | 0.85 | 0.67 | | StackCAS0 1 | 41 | 30 | 29 | 3.72 | 2.14 | | StackLock0 1 | 37 | 26 | 25 | 2.33 | 1.06 | | Lu-fig2 1 | 39 | 20 | 19 | 0.22 | 0.12 | | Lu-fig2 2 | 61 | 35 | 32 | 43.06 | 9.05 | #### IC3+PMA performs worse | Benchmark | Places | IC3+PMA | IC3+PMA | IC3+PMA | IC3 time(s) | |-------------------------------|--------|-----------|---------|---------|-------------| | | | AbsPlaces | Ref | time(s) | | | Uncoverable instances | | | | | | | Peterson | 14 | 10 | 8 | 0.35 | 0.13 | | Lamport | 11 | 7 | 6 | 0.06 | 0.02 | | Ext. ReadWrite (small consts) | 24 | 14 | 13 | 1.23 | 0.28 | | $x0_AA_q1$ | 312 | # | # | Timeout | 70.28 | | csm | 14 | 9 | 8 | 0.19 | 0.02 | | Coverable instances | | | | | | | RandCAS 1 | 48 | 34 | 33 | 0.85 | 0.67 | | StackCAS0 1 | 41 | 30 | 29 | 3.72 | 2.14 | | StackLock0 1 | 37 | 26 | 25 | 2.33 | 1.06 | | Lu-fig2 1 | 39 | 20 | 19 | 0.22 | 0.12 | | Lu-fig2 2 | 61 | 35 | 32 | 43.06 | 9.05 | - the efficiency of refinement method is not so high - the way to deal with frames after refinement is not efficient #### future work - optimize the implementation to achieve better results - apply the approach to analyze more properties and models #### Thank You For Your Attention Kang, Bai, Jiao